Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition.

نویسندگان

  • Hai Ying Fu
  • Tetsuo Minamino
  • Osamu Tsukamoto
  • Tamaki Sawada
  • Mitsutoshi Asai
  • Hisakazu Kato
  • Yoshihiro Asano
  • Masashi Fujita
  • Seiji Takashima
  • Masatsugu Hori
  • Masafumi Kitakaze
چکیده

AIMS Proteasome inhibitors are a novel class of anticancer agents that induce tumour cell death via endoplasmic reticulum (ER) stress. Since ER stress is involved in the development of heart failure, we investigated the role of ER-initiated cardiomyocyte death by proteasome inhibition. METHODS AND RESULTS Rat neonatal cardiomyocytes were used in this study. Proteasome activity was assayed using proteasome peptidase substrates. Cell viability and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenol tetrazolium bromide and flow cytometry, respectively. Western blot analysis, real-time polymerase chain reaction (PCR) and reverse transcriptional PCR were used to detect the expression of protein and messenger ribonucleic acid (RNA). The location of overexpressed glucose-regulated protein (GRP) 78 was observed by confocal fluorescence microscopy. Proteasome inhibition induced cardiomyocyte death and activated ER stress-induced transcriptional factor ATF6, but not XBP1 (X-box binding protein 1), without up-regulating ER chaperones. ER-initiated apoptosis signalling, including cytosine-cytosine-adenine-adenine-thymine enhancer-binding protein (C/EBP) homologous protein (CHOP), c-Jun-N-terminal kinase (JNK), and caspase-12, was activated by proteasome inhibition. Short interference RNA targeting CHOP, but not the blockage of caspase-12 or JNK pathway, attenuated cardiomyocyte death. Overexpression of GRP78 suppressed both CHOP expression and cardiomyocyte death by proteasome inhibition. CONCLUSION These findings demonstrate that proteasome inhibition induces ER-initiated cardiomyocyte death via CHOP-dependent pathways without compensatory up-regulation of ER chaperones. Supplement and/or pharmacological induction of GRP78 can attenuate cardiac damage by proteasome inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.

We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc sign...

متن کامل

Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.

Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agoni...

متن کامل

Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells.

Plasma cells producing high levels of paraprotein are dependent on the unfolded protein response (UPR) and chaperone proteins to ensure correct protein folding and cell survival. We hypothesized that disrupting client-chaperone interactions using heat shock protein 90 (Hsp90) inhibitors would result in an inability to handle immunoglobulin production with the induction of the UPR and myeloma ce...

متن کامل

CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system

Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus indu...

متن کامل

The Endoplasmic Reticulum-Resident Chaperone Heat Shock Protein 47 Protects the Golgi Apparatus from the Effects of O-Glycosylation Inhibition

The Golgi apparatus is important for the transport of secretory cargo. Glycosylation is a major post-translational event. Recognition of O-glycans on proteins is necessary for glycoprotein trafficking. In this study, specific inhibition of O-glycosylation (Golgi stress) induced the expression of endoplasmic reticulum (ER)-resident heat shock protein (HSP) 47 in NIH3T3 cells, although cell death...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2008